The Classical Linear Regression Model with one Incomplete Binary Variable
نویسندگان
چکیده
We present three di erent methods based on the conditional mean im putation when binary explanatory variables are incomplete Apart from the single imputation and multiple imputation especially the so called pi imputation is presented as a new procedure Seven procedures are com pared in a simulation experiment when missing data are con ned to one independent binary variable complete case analysis zero order regres sion categorical zero order regression pi imputation single imputation multiple imputation modi ed rst order regression After a brief theo retical description of the simulation experiment MSE ratio variance and bias are used to illustrate di erences within and between the approaches
منابع مشابه
Binary Regression With a Misclassified Response Variable in Diabetes Data
Objectives: The categorical data analysis is very important in statistics and medical sciences. When the binary response variable is misclassified, the results of fitting the model will be biased in estimating adjusted odds ratios. The present study aimed to use a method to detect and correct misclassification error in the response variable of Type 2 Diabetes Mellitus (T2DM), applying binary ...
متن کاملA matrix method for estimating linear regression coefficients based on fuzzy numbers
In this paper, a new method for estimating the linear regression coefficients approximation is presented based on Z-numbers. In this model, observations are real numbers, regression coefficients and dependent variables (y) have values for Z-numbers. To estimate the coefficients of this model, we first convert the linear regression model based on Z-numbers into two fuzzy linear regression mode...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملEvaluation of hybrid fuzzy regression capability based on comparison with other regression methods
In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...
متن کامل